Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38366179

ABSTRACT

Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus and intestinal bacteria in healthy and B-cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with Tritrichomonas musculus functional changes, which were accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single-cell transcriptomics identified distinct Tritrichomonas musculus life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable data sets to drive future mechanistic studies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Tritrichomonas , Animals , Mice , Eukaryota , Bacteria
2.
Mucosal Immunol ; 17(2): 226-237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331095

ABSTRACT

Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. This study, shows that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their T cell receptors. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.


Subject(s)
Colitis , Gastrointestinal Microbiome , Natural Killer T-Cells , Male , Female , Mice , Animals , Antigens , Inflammation , Lymphocyte Activation
3.
Neurobiol Dis ; 187: 106310, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37769746

ABSTRACT

INTRODUCTION: This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). METHODS: This analysis consisted of 150 normal controls (CN), 257 MCI, and 205  AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. RESULTS: Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. DISCUSSION: Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.

4.
Sci Immunol ; 8(86): eabq4573, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37540734

ABSTRACT

Maintaining macrophage (MΦ) heterogeneity is critical to ensure intestinal tissue homeostasis and host defense. The gut microbiota and host factors are thought to synergistically guide intestinal MΦ development, although the exact nature, regulation, and location of such collaboration remain unclear. Here, we report that microbial biochemical energy metabolism promotes colony-stimulating factor 2 (CSF2) production by group 3 innate lymphoid cells (ILC3s) within solitary isolated lymphoid tissues (SILTs) in a cell-extrinsic, NLRP3/P2X7R-dependent fashion in the steady state. Tissue-infiltrating monocytes accumulating around SILTs followed a spatially constrained, distinct developmental trajectory into SILT-associated MΦs (SAMs). CSF2 regulated the mitochondrial membrane potential and reactive oxygen species production of SAMs and contributed to the antimicrobial defense against enteric bacterial infections. Collectively, these findings identify SILTs and CSF2-producing ILC3s as a microanatomic niche for intestinal MΦ development and functional programming fueled by the integration of commensal microbial energy metabolism.


Subject(s)
Immunity, Innate , Lymphocytes , Lymphocytes/metabolism , Intestines , Lymphoid Tissue , Macrophages
5.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37090671

ABSTRACT

Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.

6.
J Immunol ; 208(7): 1782-1789, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35256512

ABSTRACT

Commensal intestinal protozoa, unlike their pathogenic relatives, are neglected members of the mammalian microbiome. These microbes have a significant impact on the host's intestinal immune homeostasis, typically by elevating anti-microbial host defense. Tritrichomonas musculis, a protozoan gut commensal, strengthens the intestinal host defense against enteric Salmonella infections through Asc- and Il1r1-dependent Th1 and Th17 cell activation. However, the underlying inflammasomes mediating this effect remain unknown. In this study, we report that colonization with T. musculis results in an increase in luminal extracellular ATP that is followed by increased caspase activity, higher cell death, elevated levels of IL-1ß, and increased numbers of IL-18 receptor-expressing Th1 and Th17 cells in the colon. Mice deficient in either Nlrp1b or Nlrp3 failed to display these protozoan-driven immune changes and lost resistance to enteric Salmonella infections even in the presence of T. musculis These findings demonstrate that T. musculis-mediated host protection requires sensors of extracellular and intracellular ATP to confer resistance to enteric Salmonella infections.


Subject(s)
Apoptosis Regulatory Proteins , Microbiota , NLR Family, Pyrin Domain-Containing 3 Protein , Tritrichomonas , Animals , Apoptosis Regulatory Proteins/immunology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mammals/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Symbiosis , Tritrichomonas/metabolism
7.
Nanoscale ; 11(24): 11550-11561, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31168552

ABSTRACT

Well-controlled, focused electron-beam induced etching of copper thin films has been successfully conducted on bulk substrates in an environmental scanning electron microscope by controlling liquid-film thickness with an in situ correlative interferometry system. Knowledge of the liquid-film thickness enables a hybrid Monte Carlo/continuum model of the radiation chemistry to accurately predict the copper etch rate using only electron scattering cross-sections, radical yields, and reaction rates from previous studies. Etch rates depended strongly on the thickness of the liquid film and simulations confirmed that this was a result of increased oxidizing radical generation. Etch rates also depended strongly, but non-linearly, on electron beam current, and simulations showed that this effect arises through the dose-rate dependence of reactions of radical species.

9.
Cell ; 176(3): 610-624.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612739

ABSTRACT

Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.


Subject(s)
Immunoglobulin A/metabolism , Interleukin-10/metabolism , Intestines/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Immunoglobulin A/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neuroimmunomodulation/immunology , Plasma Cells/metabolism
10.
Sci Signal ; 11(533)2018 06 05.
Article in English | MEDLINE | ID: mdl-29871911

ABSTRACT

The transient receptor potential (TRP) family is a large family of widely expressed ion channels that regulate the intracellular concentration of ions and metals and respond to various chemical and physical stimuli. TRP subfamily M member 7 (TRPM7) is unusual in that it contains both an ion channel and a kinase domain. TRPM7 is a divalent cation channel with preference for Ca2+ and Mg2+ It is required for the survival of DT40 cells, a B cell line; however, deletion of TRPM7 in T cells does not impair their development. We found that expression of TRPM7 was required for B cell development in mice. Mice that lacked TRPM7 in B cells failed to generate peripheral B cells because of a developmental block at the pro-B cell stage. The loss of TRPM7 kinase activity alone did not affect the proportion of peripheral mature B cells or the development of B cells in the bone marrow. However, supplementation with a high concentration of extracellular Mg2+ partially rescued the development of TRPM7-deficient B cells in vitro. Thus, our findings identify a critical role for TRPM7 ion channel activity in B cell development.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/physiology , Lymphopoiesis , Magnesium/metabolism , Myeloid Cells/physiology , TRPM Cation Channels/physiology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology
11.
J Am Coll Cardiol ; 67(19): 2249-2258, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27173037

ABSTRACT

BACKGROUND: Whether the rate of drug elution and polymer absorption affects clinical outcomes of biodegradable polymer-based drug-eluting stents (DES) is unknown. The widely used polylactide polymer-based Excel stent (JW Medical, Weihai, China) elutes sirolimus within 180 days, and the polylactide polymer is completely absorbed within 6 to 9 months. In contrast, the poly-lactide-co-glycolide polymer-based BuMA stent (Sino Medical, Tianjin, China) elutes sirolimus within 30 days, and the poly-lactide-co-glycolide polymer is completely absorbed within 3 months. Thus, both metallic DES elute sirolimus, isolating major differences to the polymer and elution kinetics. OBJECTIVES: The goal of this study was to compare the safety and effectiveness between the BuMA sirolimus-eluting stent (SES) and Excel SES in an "all-comers" population. METHODS: PANDA III was a multicenter trial with few exclusion criteria, powered for sequential noninferiority and superiority testing. The primary endpoint was 1-year target lesion failure (TLF), a composite of cardiac death, target vessel myocardial infarction, or ischemia-driven target lesion revascularization. RESULTS: Between December 2013 and August 2014, 2,348 patients were randomly assigned to treatment with BuMA (n = 1,174) or Excel SES (n = 1,174). The 1-year primary endpoint of TLF occurred in 6.4% of patients in each group (difference: 0.06%; 95% confidence interval: 1.93% to 2.04%; pnoninferiority = 0.0003; psuperiority = 0.95). There were no significant between-group differences in any of the secondary endpoints other than the incidence of definite/probable stent thrombosis, which occurred less frequently with the BuMA stent (0.5% vs. 1.3%; log-rank p = 0.048). CONCLUSIONS: The BuMA SES was demonstrated to be noninferior to the Excel SES for 1-year TLF, with a lower incidence of stent thrombosis. (Comparison of BuMA eG Based BioDegradable Polymer Stent With EXCEL Biodegradable Polymer Sirolimus-eluting Stent in "Real-World" Practice [PANDA-III]; NCT02017275).


Subject(s)
Absorbable Implants , Drug-Eluting Stents , Polyesters/chemistry , Polymers/chemistry , Coronary Artery Disease/therapy , Female , Humans , Male , Middle Aged , Myocardial Infarction/epidemiology , Myocardial Revascularization/statistics & numerical data , Percutaneous Coronary Intervention , Prospective Studies , Prosthesis Design , Sirolimus , Thrombosis/etiology
12.
Cell Rep ; 2(6): 1530-6, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23260664

ABSTRACT

Telomeric DNA repeats are lost as normal somatic cells replicate. When telomeres reach a critically short length, a DNA damage signal is initiated, inducing cell senescence. Some studies have indicated that telomere length correlates with mortality, suggesting that telomere length contributes to human life span; however, other studies report no correlation, and thus the issue remains controversial. Domestic dogs show parallels in telomere biology to humans, with similar telomere length, telomere attrition, and absence of somatic cell telomerase activity. Using this model, we find that peripheral blood mononuclear cell (PBMC) telomere length is a strong predictor of average life span among 15 different breeds (p < 0.0001), consistent with telomeres playing a role in life span determination. Dogs lose telomeric DNA ~10-fold faster than humans, which is similar to the ratio of average life spans between these species. Breeds with shorter mean telomere lengths show an increased probability of death from cardiovascular disease, which was previously correlated with short telomere length in humans.


Subject(s)
Breeding , Longevity/physiology , Telomere/metabolism , Animals , Dogs , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Species Specificity , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...